分野	専門基礎分野	対象学年	1		
	一人体の構造と機能ー	時期	前期		
授業科目	生化学	単位	1		
	Biochemistry	時間	30		
		方法	講義		
担当教員	非常勤講師				
科目責任者					
授業概要	人間の健康維持増進、疾病の予防治療のため、人体の様々な仕組みを生物学的に理解する。				
目標	生化学は建学の精神である「生命の尊厳と平等」を基本理念とし、人間の健康維持増進、疾病の予防治療のため、人体の様々な仕組みを生物学、化学の理論と手法によって解明することを目標とする。 生化学は生命科学の一分野であります。生命現象は生体成分、物質代謝、生体情報の三つの要素から構成するとの仮説のもと、本授業は「生化学のあらまし」、「人体の成り立ち」、「生命の最小単位である細胞の構造と機能」、「生体成分である糖質、脂質、生体高分子であるタンパク質と核酸などの化学的性質と機能」、「生体情報に関わる遺伝子、酵素、ミネラル、ビタミン、ホルモンなどの機能」を学習し人体を分子(物質)レベルで理解します。				
評価方法	筆記試験の成績、必要に応じて小テスト等の成績を加算する。 また、授業中の態度等により総合的に判断する。				
使用テキスト	1. 石黒伊三雄監修、篠原力雄、饒村譲編集				
	わかりやすい生化学一疾病と代謝・栄養の理解のな	きめー ヌー5	ヴェルヒロカワ出版		
参考図書					
メッセージ	看護学生として生化学を学ぶ意味を考え、意欲的に学習していきましょう。				

回数	単元・主題	授業のねらい	授業内容	方法	備考
1	生体の成り立ち と生体分子	生体の成り立ちを理解する	生体の構成	講義	
2	生体の成り立ちと生体分子	細胞の役割と生体を構成している基本物質を理解する	生体の成り立ちと生体分子 細胞について、細胞の構造と機能、官能基	講義	
3	タンパク質の性質	タンパク質の性質について理解 する	タンパク質の性質 タンパク質の分類・構造、アミノ酸の種類 タンパク質の変性	講義	
4	酵素の性質と働き	酵素の種類と特性について理解 する	酵素の性質と働き 酵素の種類と特性・分類、酵素反応	講義	
5	酵素の性質と働き	酵素反応速度について理解する	酵素の性質と働き 補酵素、酵素反応速度論、酵素阻害、 酵素活性調節	講義	
6	酵素の性質と働き	アイソエンザイムについて理解 する	酵素の性質と働き 酵素、アイソエンザイムと逸脱酵素		
7	糖質の代謝	糖質の代謝について理解する	糖質の代謝 糖の分類、糖質の消化・吸収、ATP、 TCAサイクル、糖質エネルギー	講義	
8	前半まとめ		生体の成り立ちと生体分子、タンパク質の性質、 酵素の性質と働きのまとめ	講義	
9	糖質の代謝	血糖の調節について理解する	血糖の調節 グリコーゲンの合成、血糖調節に関与するホル モンと作用機序、糖質エネルギー	講義	

専門基礎分野

					31/2/3/21
10	脂質の代謝	脂質について理解する	脂質の種類と化学的性質	講義	
11	脂質の代謝	脂質の代謝について理解する	脂質の代謝 脂肪酸の分解と合成、コレステロールの合成と 代謝	講義	
12	脂質の代謝	リポタンパク質の代謝について 理解する 脂質代謝異常について理解する	リポタンパク質と脂質代謝異常	講義	
13	アミノ酸および タンパク質の代 謝	生体内におけるアミノ酸代謝に ついて理解する	アミノ酸の代謝 脱アミノ反応、尿素回路、アミノ酸代謝	講義	
14	ホルモン ビタミン ホメオスタシス	様々な内分泌腺から分泌されるホルモンと作用について理解する ピタミンの生理作用と内部環境の恒常性について理解する	ホルモン ホルモンの種類と作用機序 各種ホルモン、ホルモン関連物質 ビタミン 水溶性ビタミンと脂溶性ビタミン ホメオスタシス ホメオスタシスについて、神経系・内分泌系・ 免疫系・代謝による調節、フィードバック調節	業裁	
15			終講試験		